Abstract
Finding the minimum distance of linear codes is a non-deterministic polynomial-time-hard problem and different approaches are used in the literature to solve this problem.
 Although, some of the methods focus on finding the true distances by using exact algorithms, some of them focus on optimization algorithms to find the lower or upper bounds of the distance. In this study,
 we focus on the latter approach. We first give the swarm intelligence background of artificial bee colony algorithm, we explain the algebraic approach of such algorithm and call it the algebraic artificial bee colony algorithm (A-ABC). Moreover, we develop the A-ABC algorithm by integrating it with the algebraic differential mutation operator. We call the developed algorithm the mutation-based algebraic artificial bee colony algorithm (MBA-ABC). We apply both; the A-ABC and MBA-ABC algorithms to the problem of finding the minimum distance of linear codes. The achieved results indicate that the MBA-ABC algorithm has a superior performance when compared with the A-ABC algorithm when finding the minimum distance of Bose, Chaudhuri, and Hocquenghem (BCH) codes (a special type of linear codes).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish Journal of Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.