Abstract
In this article, we consider decoding Grassmann codes, linear codes associated to the Grassmannian and its embedding in a projective space. We look at the orbit structure of Grassmannian arising from the multiplicative group in . We project the corresponding Grassmann code onto these orbits to obtain a subcode of a -ary Reed-Solomon code. We prove that some of these projections contain an information set of the parent Grassmann code. By improving the decoding capacity of Peterson's decoding algorithm for the projected subcodes, we prove that one can correct up to errors for Grassmann code, where is the minimum distance of Grassmann code.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have