Alpha-isopropylmalate isomerase, the second specific enzyme in the biosynthesis of leucine, is coded for by two genes, leuC and leuD. Leucine auxotrophs, harboring leuD mutations including a deletion of the entire leuD gene, revert to leucine prototrophy owing to mutations at a locus, supQ, substantially distant to the leucine operon. A large number of independently isolated supQ mutations were characterized. A significant increase in the spontaneous frequency of supQ mutations was found after mutagenesis with 2-aminopurine, N-methyl-N'-nitro-N-nitrosoguanidine, diethyl sulfate, and nitrous acid. The supQ function in most of these strains is temperature sensitive, resulting in more efficient suppression with decreasing temperature. At higher temperatures, the supQ limits the growth rate of leuD supQ mutant strains. All supQ mutations are co-transducible with proA and proB, with co-transduction frequencies ranging from 5.4 to 99.9% for different supQ mutations. Many supQ mutations were isolated, especially after nitrous acid mutagenesis, that had acquired a simultaneous proline requirement. The data support the idea of two genes, supQ and newD, whose protein products form a complex. The newD gene product, without any genetic alteration, is capable of substituting for the missing leuD protein. However, mutations in the supQ gene (point mutations or deletions) are necessary to make the newD protein available, which is normally tied up in a complex with the supQ protein.
Read full abstract