Abstract
Conventional methods for chromosomal mapping in Escherichia coli are (i) interruption of matings to obtain minimum marker entry times, (ii) linkage analysis of recombinants, and (iii) cotransduction. Method (i) has a resolution of about 0.5 min (5 x 10(4) nucleotides) and is not useful for distances less than about 1 min; methods (ii) and (iii) are capable of better resolution but are generally not very reproducible and no general theory is available for translating crossing-over and cotransduction frequencies into physical chromosomal distances. We found that when merozygotes are irradiated (X rays or ultraviolet light) soon after marker transfer, high linkage values (0.8 to 1.0) between nearby marker pairs decrease with radiation dose to 0.5. Our results are quantitatively consistent with the idea that radiations induce crossing-over lesions proportional to dose, and the number of such lesions between two markers is proportional to the physical separation of the markers in the range that can also be measured by interruption of mating (0.5 to 4.0 min). Additivity relations among markers are also satisfied. We used this technique to measure the distances (0.1 to 1.0 min) between several pairs of closely linked markers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have