Solar photovoltaic (PV) deployment is rapidly expanding around the world. However, the soiling factor has an impact on its performance. Saudi Arabia has high solar irradiation and plans to diversify its energy mix for electricity generation by deploying more solar PV across the country. However, it is located in an arid and desert environment, making it a challenging project due to dust accumulation on solar modules. The soiling and PV performance in Saudi Arabia are examined in this paper. Furthermore, it highlights several mitigation techniques that can be used to maintain PV performance through preventive and restorative measures. Furthermore, this study looks into the size and characterization of dust in Saudi Arabia, as well as the entire life cycle of dust accumulation on PV modules. In this review study, the performance of solar PV systems is evaluated under soiling in different regions of Saudi Arabia. Depending on the local environment and other factors, the PV performance has been reduced by somewhere between 2% and 50%. A single sandstorm reduced the module power output by 20%. As revealed in Dhahran, the PV module was exposed to an outdoor environment and not cleaned for 6 months resulting in a power drop of more than 50%. It is strongly advised to clean PV panels once a month or fewer to maintain a high-performance system. However, in the event of a dust storm, it is advised to clean the system immediately to avoid a major decline in PV performance. The bi-facial PV solar panels technology associated with solar trackers and utilizing robotic cleaning systems have maximized the received solar irradiation and minimized the soiling loss efficiently. The most common elements found in dust particles are primarily derived from the natural desert. It has been noted that the composition and sizes of dust particles depend heavily on the location of the PV module. It is concluded that dust accumulation and cleaning costs are not a significant barrier to large-scale, cost-effective solar PV deployments in Saudi Arabia, particularly in the central region, which is considered a high-suitable region for utility-size PV plants due to many factors. The results of this study are essential for enlightening the PV engineering community, investors, and the research community about how soiling may affect regions with significant solar potential, such as Saudi Arabia, and what potential soiling mitigation strategies may be considered to maintain high-performance solar PV projects.
Read full abstract