Abstract

In this paper, a Deep Reinforcement Learning (DRL)-based approach for learning mobile cleaning robot navigation commands that leverage experience from expert demonstrations is presented. First, expert demonstrations of robot motion trajectories in simulation in the cleaning robot domain are collected. The relevant motion features with regard to the distance to obstacles and the heading difference towards the navigation goal are extracted. Each feature weight is optimized with respect to the collected data, and the obtained values are assumed as representing the optimal motion of the expert navigation. A reward function is created based on the feature values to train a policy with semi-supervised DRL, where an immediate reward is calculated based on the closeness to the expert navigation. The presented results show the viability of this approach with regard to robot navigation as well as the reduced training time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.