Abstract
Path planning refers to that the mobile robot can obtain the surrounding environment information and its own state information through the sensor carried by itself, which can avoid obstacles and move towards the target point. Deep reinforcement learning consists of two parts: reinforcement learning and deep learning, mainly used to deal with perception and decision-making problems, has become an important research branch in the field of artificial intelligence. This paper first introduces the basic knowledge of deep learning and reinforcement learning. Then, the research status of deep reinforcement learning algorithm based on value function and strategy gradient in path planning is described, and the application research of deep reinforcement learning in computer game, video game and autonomous navigation is described. Finally, I made a brief summary and outlook on the algorithms and applications of deep reinforcement learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.