Abstract
Computer vision has advanced so far that machines now can think and see as we humans do. Especially deep learning has raised the bar of excellence in computer vision. However, the recent emergence of deep reinforcement learning is threatening to soar even greater heights as it combines deep neural networks with reinforcement learning along with numerous added advantages over both. This, being a relatively recent technique, has not yet seen many works, and so its true potential is yet to be unveiled. Thus, this chapter focuses on shedding light on the fundamentals of deep reinforcement learning, starting with the preliminaries followed by the theory and basic algorithms and some of its variations, namely, attention aware deep reinforcement learning, deep progressive reinforcement learning, and multi-agent deep reinforcement learning. This chapter also discusses some existing deep reinforcement learning works regarding computer vision such as image processing and understanding, video captioning and summarization, visual search and tracking, action detection, recognition and prediction, and robotics. This work further aims to elucidate the existing challenges and research prospects of deep reinforcement learning in computer vision. This chapter might be considered a starting point for aspiring researchers looking to apply deep reinforcement learning in computer vision to reach the pinnacle of performance in the field by tapping into the immense potential that deep reinforcement learning is showing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.