Because of the superior optical properties and potential applications in display technology, colloidal synthesis of halide perovskite quantum dots has been intensively studied. Although great successes have been made in the fabrication of green emissive CH3NH3PbBr3 quantum dots, the fabrication of stable iodide-based CH3NH3PbI3 quantum dots remains a great challenge because of their sensitivity to moisture in the open air. Even in a glovebox, the colloidal CH3NH3PbI3 quantum dots obtained from N,N-dimethylformamide suffer from instability caused by fast degradation within days to weeks. In this work, we investigated the interactions between perovskite precursors and various polar solvents as well as their influence on the crystallization of CH3NH3PbI3 in reprecipitation synthesis. By gaining chemical insight into the coordination effects, we can explain the degradation of CH3NH3PbI3 to the defective crystals with coordinated solvents on the surface and/or intrinsic inner iodine vacancies. On the basis of ...
Read full abstract