Abstract

Hybrid organic-inorganic metal halides of the type CH3NH3PbX3 have emerged as potential materials for photovoltaic applications. In this paper we discuss structural, electronic, and optical spectroscopy investigations performed on high quality single crystals of CH3NH3PbI3. Our results conclusively suggest that CH3NH3PbI3 crystallizes in centrosymmetric space group and the methylammonium moiety exhibits disordered packing at room temperature. Extracted values of the exciton binding energy, the electron-phonon coupling constant, and the schematic energy level diagram constructed from the emission broadening, Raman, and photoemission spectroscopy measurements clearly show the potential of this system in photovoltaic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.