In this paper, the band-edge work function performance is systematically investigated and modulated via novel nitrogen plasma treatment (NPT) with the advanced PMOS1st (TiN/TiN/TiAlC) and NMOS1st (TiN/TiN) laminated stacks for the fabricated PMOS capacitors. The basic multi-VT performance is strongly modulated by controlling NPT process. 1) Flatband voltage (VFB) shifts towards band edge are obtained as +120 mV (undiluted), +430 mV (diluted) for PMOS1st and +80 mV (undiluted), +210 mV (diluted) for NMOS1st. 2) By manipulating the NPT process from undiluted and diluted case, it can provide significant high band-edge effective work function ranging from 4.89 eV (undiluted) to 5.21 eV (diluted) for PMOS1st and 5.22 eV (undiluted) to 5.35 eV (diluted) for NMOS1st laminated stack, respectively. 3) NPT diluted with hydrogen is observed to maintain ultralow bulk trap density (1.11 × 1011 cm−2 for PMOS1st and nearly zero for NMOS1st) and interface trap density (3.34 × 1011 eV−1 cm−2 for PMOS1st and 6.45 × 1011 eV−1 cm−2 for NMOS1st). The significant band-edge work function modulation and very low bulk and interface trap density demonstrate the novel NPT with PMOS1st/NMOS1st laminated stack is very promising to achieve the target of PMOS low-power application in the further technology node.