Abstract

The effect of thickness, temperature, and source-drain bias voltage, V(DS), on the subthreshold slope, SS, and off-state properties of black phosphorus (BP) field-effect transistors is reported. Locally back-gated p-MOSFETs with thin HfO2 gate dielectrics were analyzed using exfoliated BP layers ranging in thickness from ∼4 to 14 nm. SS was found to degrade with increasing V(DS) and to a greater extent in thicker flakes. In one of the thinnest devices, SS values as low as 126 mV/decade were achieved at V(DS) = -0.1 V, and the devices displayed record performance at V(DS) = -1.0 V with SS = 161 mV/decade and on-to-off current ratio of 2.84 × 10(3) within a 1 V gate bias window. A one-dimensional transport model has been utilized to extract the band gap, interface state density, and the work function of the metal contacts. The model shows that SS degradation in BP MOSFETs occurs due to the ambipolar turn on of the carriers injected at the drain before the onset of purely thermionic-limited transport at the source. The model is further utilized to provide design guidelines for achieving ideal SS and meet off-state leakage targets, and it is found that band edge work functions and thin flakes are required for ideal operation at high V(DS). This work represents a comprehensive analysis of the fundamental performance limitations of Schottky-contacted BP MOSFETs under realistic operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.