Abstract
We experimentally investigate the large-signal radio frequency performances of surface-channel p-type diamond MESFETs fabricated on hydrogenated polycrystalline diamond. The devices under examination have a coplanar layout with two gate fingers, total gate periphery of 100 μm; in DC they exhibit a hole accumulation behavior with threshold voltage V t ≈ 0–0.5 V and maximum drain current density of 120 mA/mm. The best small-signal radio frequency performances (maximum cutoff or transition frequency f T and oscillation frequency f max) were obtained close to the threshold and were of the order of 6 and 15 GHz, respectively. The power radio frequency response was characterized by driving the devices in class A at an operating frequency of 2 GHz and identifying through the active load-pull technique the optimum load for maximum power added efficiency. A power gain in linearity of 8 dB and an output power of approximately 0.2 W/mm with 22% power added efficiency were obtained on the optimum load impedance at a bias point V DS = −14 V, V GS = −1 V. To the best of our knowledge, these are the first large signal measurements ever reported for surface MESFET on polycrystalline diamond, and show the potential of such technology for the development of microwave power devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.