Abstract

This paper presents a compact model for the electrostatic potentials and the current characteristics of doped long-channel cylindrical surrounding-gate (SRG) MOSFETs. An analytical expression of the potentials is derived as a function of doping concentration. Then, the mobile charge density is calculated using the analytical expressions of the surface potential at the surface and the difference of potentials between the surface and the center of the silicon doped layer. Using the expression obtained for the mobile charge, a drain current expression is derived. Comparisons of the modeled expressions with the simulated characteristics obtained from the 3D ATLAS device simulator for the transfer characteristics, as well for the output characteristics, show good agreement within the practical range of gate and drain voltages and for doping concentrations ranging from 10 16 cm −3 to 5 × 10 18 cm −3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.