Due to the harsh operating conditions experienced by 1Cr17Ni2 steel, efforts were made to optimize its performance by subjecting 1Cr17Ni2 stainless steel to nitriding treatments at temperatures of 460 °C, 500 °C, and 550 °C, each for durations of 8 and 16 h. The formation state of its cross section was observed through a metallurgical microscope and scanning electron microscope, and it was characterized by hardness measurement. Through a ball-on-disk wear experiment, the adhesive wear and friction coefficient of its non-lubricated sliding were measured. The phase composition of its surface was measured by XRD. The results revealed that nitriding led to the formation of a modified layer on the surface of the samples, with a depth of 130 μm after nitriding at 550 °C for 16 h. The hardness of the modified layer exceeded that of the matrix, reaching up to 1400 Hv0.1. X-ray diffraction (XRD) analysis of the sample surfaces indicated the presence of high-hardness phases such as CrN, γ′-Fe4N, and ε-Fe2-3N. This article predicts the mechanical properties of nitrided phases in high-alloy martensitic stainless steel through first-principles computational methods. We provide a reference for improving the performance of high-alloy steel after nitriding through a combination of theoretical calculations and experiments.