Systems-on-Chip’s (SoC) design complexity demands a high-performance linear regulator architecture to maintain a stable operation for the efficient power management of today’s devices. Over the decades, the low-dropout (LDO) voltage regulator design has gained attention due to its design scalability with better performance in various application domains. Industry professionals as well as academia have put forward their innovations such as event-driven explicit time-coding, exponential-ratio array, switched RC bandgap reference circuit, etc., to make a trade-off between several performance parameters such as die area, ripple rejection, supply voltage range, and current efficiency. However, current LDO architectures in micro and nanometer complementary metal–oxide–semiconductor (CMOS) technology face some challenges, such as short channel effects, gate leakage, fabrication difficulty, and sensitivity to process variations at nanoscale. This review presents the LDO architectures, optimization techniques, and performance comparisons in different LDO design domains such as digital, analog, and hybrid. In this review, various state-of-the-art circuit topologies, deployed for the betterment of LDO performance and focusing on the specific parameter up-gradation to the overall improvement of the functionality, are framed, which will serve as a comparative study and reference for researchers.