Abstract

Frequency and voltage deviations are two main problems in microgrids, especially with the increase in the penetration level of renewable energies. This paper presents novel techniques to apply combined the load frequency control and automatic voltage regulation of two interconnected microgrids. The two microgrids are operated by solar energy and bioenergy technologies and include energy-storage facilities. The control is applied using a novel accelerating PID controller (PIDA), which is compared to state-of-the-art control schemes. The controllers are designed using a new doctor and patient optimization technique (DPO), which is compared to state-of-the-art techniques. The combined design of load frequency controllers and automatic voltage regulators is also compared to a standalone design. The comparisons are carried out by testing the system performance at each operation condition in addition to indicators such as integral absolute error for frequency and voltage and integral time absolute error for frequency and voltage. The results show that a combined DPO–PIDA design of LFC–AVR schemes for fully sustainable microgrids has better performance than other standalone designs and other control and optimization alternatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call