Priority directions and measures among the main branches of urban electric transport are resource saving in the subway transportation system during its operation. First of all, this problem must be solved by scientific support, that is, at the stage of designing parts and components of vehicles. One of the main tasks that are solved at the design stage is to increase the load-bearing capacity of the parts by analyzing their stress-strain state. The article is devoted to the calculation of the load capacity reserve of the longitudinal beam of the front subway trolley under the action of evenly distributed over the entire length of the load without taking into account the transverse forces. The priority of the research topic is substantiated, the purpose and tasks are formulated. Two approaches to the power calculation of the bearing capacity of the longitudinal beam are introduced: the calculation of the permissible stresses and the limit state. In both cases elastic models of beams are considered. In the case of calculation on the limit state, the mechanics of the occurrence of plastic hinges at the places of rigid fixing of the ends of the beam are first substantiated. The beam still retains its load capacity. With the further growth of the external load, the emergence of a plastic hinge is justified even in the middle of the beam with the simultaneous loss of the beam of the bearing capacity. To simulate the behavior of the beam according to its characteristics, including the stress and the degradation condition of its load capacity, the mathematical formulation of the problem of calculating the load capacity of the longitudinal beam when calculating the permissible stresses and the limit state without taking into account the transverse force. The load-bearing capacity of the longitudinal beam in the calculation of permissible stresses and the limit state is analyzed. The analysis of the obtained results allows us to judge the effectiveness of the proposed mathematical model as a whole. The obtained equations for the maximum allowable load when calculating the limit state and the allowable stresses allow us to reliably estimate the bearing capacity of the longitudinal beam in both cases. The increase in the bearing capacity of the beam in the case of calculation on the limit is three times. The conclusions about the adequacy of the analysis of the bearing capacity of the longitudinal beam bearing capacity were made. Keywords: resource saving, beam, bearing capacity, allowable stresses, limit state.
Read full abstract