In an orthogonal frequency division multiplexing (OFDM) based wireless systems, Fast Fourier Transform (FFT) is a critical block as it occupies large area and consumes more power. In this paper, we present an area-efficient and low power 16-bit word-width 64-point radix-22 and radix-23 pipelined FFT architectures for an OFDM-based IEEE 802.11a wireless LAN baseband. The designs are derived from radix-2k algorithm and adopt a Single-Path Delay Feedback (SDF) architecture for hardware implementation. To eliminate the complex multipliers and read-only memory (ROM) which is used for internal storage of twiddle factor coefficients, the proposed 64-point FFT employs a Canonical Signed Digit (CSD) complex constant multiplier using adders, multiplexers and shifters. The complex constant multiplier (CCM) is modified using common sub-expression sharing block that reduces the area of the design. The proposed radix-22 and radix-23 pipelined FFT architectures are modeled and implemented using TSMC 180nm CMOS technology with a supply voltage of 1.8V. The implementation results show that the proposed architectures significantly reduces the hardware cost and power consumption in comparison to existing 64-point FFT architectures.
Read full abstract