Spatiotemporal raster (STR) data employ an array of grids to represent temporally varying and spatially distributed information, commonly utilized for recording environmental variables and socioeconomic indices. To reveal the geographic patterns embedded in STR data, the clustering by fast search and finding of density peaks (CFSFDP) algorithm is considered effective and suitable. However, this algorithm encounters limitations in identifying cluster centers, handling large data volumes, and measuring the coupled spatial-temporal-attribute distance when applied to STR data. To overcome these challenges, we propose an improved method named spatial temporal-adaptive density peak tree clustering (ST-ADPTC). This method leverages adaptive density peak tree segmentation to identify cluster centers and optimizes memory usage through the k-nearest neighbors (kNN) technique. By constructing a neighborhood that incorporates both spatiotemporal and thematic attribute similarities, ST-ADPTC computes the local density of STR data, facilitating the discovery of time-varying clusters. Based on the proposed method, we develop an open-source Python package (Geo_ADPTC). Experiments conducted using benchmarking datasets illustrate improvements in cluster identification and memory reduction. Additionally, a case study of sea surface temperature data demonstrates the feasibility and effectiveness of exploring spatial and temporal distribution patterns using the proposed method.
Read full abstract