Abstract

Multispectral and 3D LiDAR remote sensing data sources are valuable tools for characterizing the 3D vegetation structure and thus understanding the relationship between forest structure, biodiversity, and microclimate. This study focuses on mapping riparian forest species in the canopy strata using a fusion of Airborne LiDAR data and multispectral multi-source and multi-resolution satellite imagery: Sentinel-2 and Pleiades at tree level. The idea is to assess the contribution of each data source in the tree species classification at the considered level. The data fusion was processed at the feature level and the decision level. At the feature level, LiDAR 2D attributes were derived and combined with multispectral imagery vegetation indices. At the decision level, LiDAR data were used for 3D tree crown delimitation, providing unique trees or groups of trees. The segmented tree crowns were used as a support for an object-based species classification at tree level. Data augmentation techniques were used to improve the training process, and classification was carried out with a random forest classifier. The workflow was entirely automated using a Python script, which allowed the assessment of four different fusion configurations. The best results were obtained by the fusion of Sentinel-2 time series and LiDAR data with a kappa of 0.66, thanks to red edge-based indices that better discriminate vegetation species and the temporal resolution of Sentinel-2 images that allows monitoring the phenological stages, helping to discriminate the species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.