This paper describes a low-power, low-noise capacitively-coupled instrumentation amplifier (CCIA) designed for capturing biopotential signals. The main advantage of proposed design are as (i) CCIA based on new IA has been proposed, (ii) the lower cutoff frequency has been improved by adding MOS based resistor, (iii) gm enhancement circuit is added in operational transconductance amplifier (OTA) based fully differential difference amplifier (FDDA)to improve gain and bandwidth. The DC electrode-offset voltage is reduced and the input impedance is increased by using feedback mechanism. Cadence EDA tool is used to analyze the findings of the proposed CCIA's in 0.18 μm, CMOS technology with a 1.8 V power supply. The proposed CCIA architecture has an adjustable mid-band gain from 52.55 to 61.11 dB for bias voltage ranges from 0.1 to 0.6 V, frequency range of 0.06 Hz–1.72 kHz, and a CMRR of 122 dB. The proposed CCIA has a total power dissipation of 190.47 nW and equivalent input referred noise (IRN) of 14.4 nV/sqrtHz at 0.01 Hz. It only occupies 0.01 mm2 of core area. To assess the robustness of suggested design, PVT analysis, post layout simulation and a comparison with previously published works demonstrates the competence of the design.
Read full abstract