A multipurpose software, called Revolt, has been developed to fully exploit the imaging capabilities of Triple-GEM 2D cameras for X-rays and neutrons detection. Both tomographic inversion techniques and synthetic data production methods are based on the modeling of a transport matrix between the 2D spatially resolved signal on a detector and the 3D signal emission in the experimental space. The core task of the Revolt software is to provide a transport matrix between the two quantities via a numerical-geometrical approach. The method is based on the analytical evaluation of detector pixels Line Of Sight generated via a Monte Carlo method to include obstacle shading on the detector image. The Revolt implementation and validation are described in this work, which provides a solid base for future application of tomographic inversion techniques in the context of fusion plasma physics.
Read full abstract