Abstract
AbstractDifferent estimates of the regional water vapor scale height, taken from ERA5 reanalysis, in situ observations and the direct optimization of retrieved water vapor profiles in GNSS tomography, are found to have major impact in the performance of tomographic inversions, with the better results displaying mean errors comparable to radiosondes. The analysis uses 7 months of GNSS (Global Navigation Satellite Systems) observations in the Amazon Dense GNSS Network near Manaus, Brazil, in 2011–2012, to compute a time series of water vapor profiles, with a tomographic technique capable of producing quasi‐instantaneous inversions with minimal external data or constraints. Results compare very well with 12‐hourly in situ radiosondes, especially in the lower troposphere above 2 km, and its daily‐to‐seasonal variability compares well with WRF (Weather Research and Forecasting) convective‐permitting simulations driven by ERA5 boundary conditions, suggesting that GNSS tomography may be an important source of atmospheric water vapor data for different applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.