Abstract

ABSTRACT The Rock Valley fault zone (RVFZ), an intraplate strike-slip fault zone in the southern Nevada National Security Site (NNSS), hosted a series of very shallow (<3 km) earthquakes in 1993. The RVFZ may also have hydrological significance within the NNSS, potentially playing a role in regional groundwater flow, but there is a lack of local hydrological data. In the Spring of 2021, we collected active-source accelerated weight drop seismic data over part of the RVFZ to better characterize the shallow subsurface. We manually picked ∼17,000 P-wave travel times and over 14,000 S-wave travel times, which were inverted for P-wave velocity (VP), S-wave velocity (VS), and VP/VS ratio in a 3D joint tomographic inversion scheme. Seismic velocities are imaged as deep as ∼700 m in areas and generally align with geologic and structural expectations. VP and VS are relatively reduced near mapped and inferred faults, with the most prominent lower VP and VS zone around the densest collection of faults. We image VP/VS ratios ranging from ∼1.5 to ∼2.4, the extremes of which occur at a depth of ∼100 m and are juxtaposed across a fault. One possible interpretation of the imaged seismic velocities is enhanced fault damage near the densest collection of faults with relatively higher porosity and/or crack density at ∼100 m depth, with patches of semiperched groundwater present in the sedimentary rock in higher VP/VS areas and drier rock in lower VP/VS areas. A relatively higher VP/VS area beneath the densest faults persists at depth, which suggests percolation of groundwater via the fault damage zone to the regionally connected lower carbonate aquifer. Potentially, the presence and movement of groundwater may have played a role in the 1993 earthquake aftershocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call