Macromolecular porphyrin nanorings are receiving significant attention because of their excellent optoelectronic properties. However, their efficiencies as potential solar materials are significantly affected by nonradiative charge recombination. To understand the recombination mechanism by alternating structural parameters and using tight-binding nonadiabatic molecular dynamics, we demonstrate that charge recombination depends strongly on the mode of the linker in the porphyrin nanoring. The nanoring having all-butadiyne-linkage (pristine-P8) inhibits carrier relaxation. In contrast, a partially fused nanoring (fused-P8) expedites the rate of quantum transition. An extension of the lifetime by a factor of 4 is due to the larger optical gap in pristine-P8 that reduces the NA coupling by decreasing the overlap between band edge states. Additionally, an intense phonon peak in the low-frequency region and rapid coherence loss within the electronic subsystem favors prolonging the carrier lifetime. This study provides an atomistic realization for the design of macromolecular porphyrin nanorings for the potential use in photovoltaic materials.
Read full abstract