Abstract
Microporous organosilicas assembled from polysilsesquioxane (POSS) building blocks are promising materials that are yet to be explored in-depth. Here, we investigate the processing and molecular structure of bispropylurea bridged POSS (POSS-urea), synthesised through the acidic condensation of 1,3-bis(3-(triethoxysilyl)propyl)urea (BTPU). Experimentally, we show that POSS-urea has excellent functionality for molecular recognition toward acetonitrile with an adsorption level of 74 mmol/g, which compares favourably to MOFs and zeolites, with applications in volatile organic compounds (VOC). The acetonitrile adsorption capacity was 132-fold higher relative to adsorption capacity for toluene, which shows the pores are highly selective towards acetonitrile adsorption due to their size and arrangement. Theoretically, our tight-binding density functional and molecular dynamics calculations demonstrated that this BTPU based POSS is microporous with an irregular placement of the pores. Structural studies confirm maximal pore sizes of ∼1 nm, with POSS cages possessing an approximate edge length of ∼3.16 Å.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.