Abstract

Laser irradiation of metals is widely used in research and applications. In this work, we study how the material geometry affects electron–phonon coupling in nano-sized gold samples: an ultrathin layer, nano-rod, and two types of gold nanoparticles (cubic and octahedral). We use the combined tight-binding molecular dynamics Boltzmann collision integral method implemented within XTANT-3 code to evaluate the coupling parameter in irradiation targets at high electronic temperatures (up to Te~20,000 K). Our results show that the electron–phonon coupling in all objects with the same fcc atomic structure (bulk, layer, rod, cubic and octahedral nanoparticles) is nearly identical at electronic temperatures above Te~7000 K, independently of geometry and dimensionality. At low electronic temperatures, reducing dimensionality reduces the coupling parameter. Additionally, nano-objects under ultrafast energy deposition experience nonthermal damage due to expansion caused by electronic pressure, in contrast to bulk metal. Nano-object ultrafast expansion leads to the ablation/emission of atoms and disorders the inside of the remaining parts. These nonthermal atomic expansion and melting are significantly faster than electron–phonon coupling, forming a dominant effect in nano-sized gold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.