Abstract

Ultraflat and damage-free single-crystal diamond is a promising material for use in electronic devices such as field-effect transistors. Diamond surfaces are conventionally prepared by the chemical mechanical polishing (CMP) method, although the CMP efficiency remains a critical issue owing to the extremely high hardness of diamond. Recently, OH radicals have been demonstrated to be potentially useful for improving the CMP efficiency for diamond; however, the underlying mechanisms are still elusive. In this work, we applied our previously developed CMP-specialized tight-binding quantum chemical molecular dynamics simulator to comprehensively elucidate the CMP mechanisms of diamond assisted by OH radicals. Our simulation results indicate that the diamond surface is oxidized by reactions with OH radicals and then a concomitant surface reconstruction takes place due to the distorted and unstable nature of the oxidized diamond surface structure. Furthermore, we interestingly reveal that the reconstruction of the diamond surface ultimately leads to two distinct removal mechanisms: (i) gradual atom-by-atom removal through the desorption of gaseous molecules (e.g., CO2 and H2CO3) and (ii) drastic sheet-by-sheet removal through the exfoliation of graphitic ring structures. Hence, we propose that promoting the oxidation-induced graphitization of the diamond surface may provide a route to further improving the CMP efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.