Previous article Next article On the Constant in the Definition of Subexponential DistributionsB. A. RogozinB. A. Rogozinhttps://doi.org/10.1137/S0040585X97977665PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractWe prove that the constant in the definition of subexponential distributions is equal to 2.[1] V. P. Chistyakov, A theorem on sums of independent positive random variables and its applications to branching random processes, Theory Probab. Appl., 9 (1964), pp. 640–648. tba TPRBAU 0040-585X Theor. Probab. Appl. LinkGoogle Scholar[2] J. Chover, , P. Ney and , and S. Wainger, Degeneracy properties of subcritical branching processes, Ann. Probab., 1 (1973), pp. 663–673. anb APBYAE 0091-1798 Ann. Probab. CrossrefGoogle Scholar[3] J. Chover, , P. Ney and , and S. Wainger, Functions of probability measures, J. Anal. Math., 26 (1973), pp. 255–302. 278 JOAMAV 0099-698X J. Anal. Math. CrossrefGoogle Scholar[4] Google Scholar[5] Google Scholar[6] W. Rudin, Limits of ratios of tails of measures, Ann. Probab., 1 (1973), pp. 982–994. anb APBYAE 0091-1798 Ann. Probab. CrossrefGoogle Scholar[7] Google Scholar[8] D. B. H. Cline, Convolutions of distributions with exponential and subexponential tails, J. Austral. Math. Soc. Ser. A, 43 (1987), pp. 347–365. CrossrefGoogle Scholar[9] J. L. Teugels, The subexponential class of probability distributions, Theory Probab. Appl., 19 (1974), pp. 821–822. tba TPRBAU 0040-585X Theor. Probab. Appl. LinkGoogle Scholar[10] J. L. Teugels, The class of subexponential distributions, Ann. Probab., 3 (1975), pp. 1000–1011. anb APBYAE 0091-1798 Ann. Probab. CrossrefGoogle Scholar[11] P. Embrechts, , C. M. Goldie and , and N. Veraverbeke, Subexponentiality and infinite divisibility, Z. Wahrsch. Verw. Gebiete, 49 (1979), pp. 335–347. zwv ZWVGAA 0044-3719 Z. Wahrscheinlichkeitstheor. Verwandte Geb. CrossrefGoogle Scholar[12] P. Embrechts and and C. M. Goldie, On convolution tails, Stochastic Process. Appl., 13 (1982), pp. 263–278. a2m STOPB7 0304-4149 Stochastic Proc. Appl. CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Subexponential Densities of Infinitely Divisible Distributions on the Half-Line17 September 2020 | Lithuanian Mathematical Journal, Vol. 60, No. 4 Cross Ref Introduction24 April 2013 Cross Ref Heavy-Tailed and Long-Tailed Distributions24 April 2013 Cross Ref Subexponential Distributions24 April 2013 Cross Ref Densities and Local Probabilities24 April 2013 Cross Ref Maximum of Random Walk24 April 2013 Cross Ref Asymptotic estimates of Gerber-Shiu functions in the renewal risk model with exponential claims13 December 2011 | Acta Mathematicae Applicatae Sinica, English Series, Vol. 28, No. 1 Cross Ref Asymptotic aspects of the Gerber–Shiu function in the renewal risk model using Wiener–Hopf factorization and convolution equivalenceInsurance: Mathematics and Economics, Vol. 46, No. 1 Cross Ref Asymptotic Ruin Probabilities of the Lévy Insurance Model under Periodic Taxation9 August 2013 | ASTIN Bulletin, Vol. 39, No. 2 Cross Ref Reinsurance under the LCR and ECOMOR treaties with emphasis on light-tailed claimsInsurance: Mathematics and Economics, Vol. 43, No. 3 Cross Ref Convolution equivalence and distributions of random sums30 November 2007 | Probability Theory and Related Fields, Vol. 142, No. 3-4 Cross Ref On lower limits and equivalences for distribution tails of randomly stopped sumsBernoulli, Vol. 14, No. 2 Cross Ref Lower Limits for Distribution Tails of Randomly Stopped SumsD. E. Denisov, D. A. Korshunov, and S. G. Foss19 November 2008 | Theory of Probability & Its Applications, Vol. 52, No. 4AbstractPDF (157 KB)Convolution Equivalence and Infinite Divisibility: Corrections and Corollaries14 July 2016 | Journal of Applied Probability, Vol. 44, No. 2 Cross Ref The overshoot of a random walk with negative driftStatistics & Probability Letters, Vol. 77, No. 2 Cross Ref Lower limits and equivalences for convolution tailsThe Annals of Probability, Vol. 35, No. 1 Cross Ref On convolution equivalence with applicationsBernoulli, Vol. 12, No. 3 Cross Ref Overshoots and undershoots of Lévy processesThe Annals of Applied Probability, Vol. 16, No. 1 Cross Ref Maxima of Independent Sums in the Presence of Heavy TailsA. V. Lebedev25 July 2006 | Theory of Probability & Its Applications, Vol. 49, No. 4AbstractPDF (100 KB)Ruin probabilities and overshoots for general Lévy insurance risk processesThe Annals of Applied Probability, Vol. 14, No. 4 Cross Ref Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risksStochastic Processes and their Applications, Vol. 108, No. 2 Cross Ref Volume 44, Issue 2| 2000Theory of Probability & Its Applications History Published online:25 July 2006 InformationCopyright © 2000 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/S0040585X97977665Article page range:pp. 409-412ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics