Abstract

The number Yn of offspring of the most prolific individual in the nth generation of a Bienaymé–Galton–Watson process is studied. The asymptotic behaviour of Yn as n → ∞ may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Yn and EYn provided that the offspring mean is finite are obtained using some convergence results for branching processes as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical branching processes are considered separately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.