Abstract

The number Y n of offspring of the most prolific individual in the nth generation of a Bienaymé–Galton–Watson process is studied. The asymptotic behaviour of Y n as n → ∞ may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Y n and EY n provided that the offspring mean is finite are obtained using some convergence results for branching processes as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical branching processes are considered separately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.