The development of fast and accurate image reconstruction algorithms under constrained data acquisition conditions is important for photoacoustic computed tomography (PACT). Sparse-view measurements have been used to accelerate data acquisition and reduce system complexity; however, reconstructed images suffer from sparsity-induced streak artifacts. In this paper, a modified back-projection (BP) method termed anti-streak BP is proposed to suppress streak artifacts in sparse-view PACT reconstruction. During the reconstruction process, the anti-streak BP finds the back-projection terms contaminated by high-intensity sources with an outlier detection method. Then, the weights of the contaminated back-projection terms are adaptively adjusted to eliminate the effects of high-intensity sources. The proposed anti-streak BP method is compared with the conventional BP method on both simulation and in vivo data. The anti-streak BP method shows substantially fewer artifacts in the reconstructed images, and the streak index is 54% and 20% lower than that of the conventional BP method on simulation and in vivo data, when the transducer number N=128. The anti-streak BP method is a powerful improvement of the BP method with the ability of artifact suppression.
Read full abstract