Abstract

To evaluate the image quality of deep learning-based reconstruction (DLR), model-based (MBIR), and hybrid iterative reconstruction (HIR) algorithms for lower-dose (LD) unenhanced head CT and compare it with those of standard-dose (STD) HIR images. This retrospective study included 114 patients who underwent unenhanced head CT using the STD (n = 57) or LD (n = 57) protocol on a 320-row CT. STD images were reconstructed with HIR; LD images were reconstructed with HIR (LD-HIR), MBIR (LD-MBIR), and DLR (LD-DLR). The image noise, gray and white matter (GM-WM) contrast, and contrast-to-noise ratio (CNR) at the basal ganglia and posterior fossa levels were quantified. The noise magnitude, noise texture, GM-WM contrast, image sharpness, streak artifact, and subjective acceptability were independently scored by three radiologists (1 = worst, 5 = best). The lesion conspicuity of LD-HIR, LD-MBIR, and LD-DLR was ranked through side-by-side assessments (1 = worst, 3 = best). Reconstruction times of three algorithms were measured. The effective dose of LD was 25% lower than that of STD. Lower image noise, higher GM-WM contrast, and higher CNR were observed in LD-DLR and LD-MBIR than those in STD (all, p ≤ 0.035). Compared with STD, the noise texture, image sharpness, and subjective acceptability were inferior for LD-MBIR and superior for LD-DLR (all, p < 0.001). The lesion conspicuity of LD-DLR (2.9 ± 0.2) was higher than that of HIR (1.2 ± 0.3) and MBIR (1.8 ± 0.4) (all, p < 0.001). Reconstruction times of HIR, MBIR, and DLR were 11 ± 1, 319 ± 17, and 24 ± 1s, respectively. DLR can enhance the image quality of head CT while preserving low radiation dose level and short reconstruction time. •For unenhanced head CT, DLR reduced the image noise and improved the GM-WM contrast and lesion delineation without sacrificing the natural noise texture and image sharpness relative to HIR. •The subjective and objective image quality of DLR was better than that of HIR even at 25% reduced dose without considerably increasing the image reconstruction times (24s vs. 11s). •Despite the strong noise reduction and improved GM-WM contrast performance, MBIR degraded the noise texture, sharpness, and subjective acceptance with prolonged reconstruction times relative to HIR, potentially hampering its feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call