A surface acoustic wave (SAW) strain sensor based on measuring acoustic Fabry-Pérot resonance peaks from a 2-port SAW resonator is demonstrated. A theoretical analysis is proposed to estimate the frequency sensitivity to strain of IDT and cavity resonances and to predict strain distributions in both the cavity and IDT regions of a 2-port SAW resonator bonded to a tapered cantilever beam. The frequency stability of cavity resonance peaks for fabricated 2-port SAW resonators of different cavity length are measured and analyzed to determine the cavity length which exhibits maximum frequency stability. A cross-correlation analysis technique is then introduced to improve the detection of the frequency shift of SAW resonances and enable multimode frequency shift detection. The measured frequency sensitivity to strain of the cavity resonances of a resonator 10 mm in length (operating frequency = 97.7 MHz) was found to be − 103.2 ± 0.2 Hz/με while demonstrating excellent linearity (R2 = 0.9999). By considering a minimum signal to noise ratio (SNR) of 3 dB, the device exhibits a minimum strain resolution of only 234 nε.
Read full abstract