Josephson-CMOS hybrid memory leverages the high speed and low power operation of single-flux quantum logic and the high integration densities of CMOS technology. One of the commonly used type of interface circuits in Josephson-CMOS memory is a Suzuki stack, which is a latching high-voltage driver circuit. Suzuki stack circuits are typically powered by an AC bias voltage that has several limitations such as synchronization and coupling effects. To address these issues, a novel DC-biased Suzuki stack circuit is proposed in this paper. As compared to a conventional AC-biased Suzuki stack circuit, the proposed DC-biased design can provide similar output voltage levels and parameter margins, approximately two times higher operating frequency, and three orders of magnitude lower heat load of bias cables.