We provide a systematic quantitative description of the edge state structure around a quantum antidot in the integer quantum Hall regime. The calculations for spinless electrons within the Hartree approximation reveal that the widely used Chklovskii et al. electrostatic description [Phys. Rev. B 46, 4026 (1992)] greatly overestimates the widths of the compressible strips; the difference between these approaches diminishes as the size of the antidot increases. By including spin effects within density functional theory in the local spin-density approximation, we demonstrate that the exchange interaction can suppress the formation of compressible strips and lead to a spatial separation between the spin-up and spin-down states. As the magnetic field increases, the outermost compressible strip related to spin-down states starts to form. However, in striking contrast to quantum wires, the innermost compressible strip (due to spin-up states) never develops for antidots.
Read full abstract