Abstract

We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite, single-wall, metallic carbon nanotubes. The effective mass model is used to describe the slowly varying spatial envelope wave functions of spinless electrons near the Fermi level at two inequivalent valleys ($K$-points) in terms of the four component Dirac equation for massless fermions, with the role of spin assumed by pseudospin due to the relative amplitude of the wave function on the sublattice atoms (``$A$'' and ``$B$''). Using boundary conditions at the ends of the tube that neither break valley degeneracy nor mix pseudospin eigenvectors, we use degenerate perturbation theory to show that the presence of impurities has two effects. First, the position of the impurity with respect to the spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy level shift as a function of energy. Second, the position of the impurity within the hexagonal graphite unit cell produces a particular $4\ifmmode\times\else\texttimes\fi{}4$ matrix structure of the corresponding effective Hamiltonian. The symmetry of this Hamiltonian with respect to pseudospin flip is related to degeneracy breaking and, for an armchair tube, the symmetry with respect to mirror reflection in the nanotube axis is related to pseudospin mixing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.