Abstract
We perform systematic numerical studies of the structure of spin-resolved compressible strips in split-gate quantum wires taking into account the exchange and correlation interactions within the density functional theory in the local spin-density approximation. We find that for realistic parameters of the wire the exchange interaction can completely suppress the formation of the compressible strips. As the depletion length or magnetic field are increased, the compressible strips starts to form first for the spin-down and then for spin-up edge channels. We demonstrate that the widths of these strips plus the spatial separation between them caused by the exchange interaction are equal to the width of the compressible strip calculated in the Hartree approximation for spinless electrons. We also discuss the effect of electron density on the suppression of the compressible strips in quantum wires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.