Recently, the integration of distributed generators (DGs) in radial distribution systems (RDS) has been widely evolving due to its sustainability and lack of pollution. This study presents an efficient optimization technique named the honey badger algorithm (HBA) for specifying the optimum size and location of capacitors and different types of DGs to minimize the total active power loss of the network. The Combined Power Loss Sensitivity (CPLS) factor is deployed with the HBA to accelerate the estimation process by specifying the candidate buses for optimal placement of DGs and capacitors in RDS. The performance of the optimization algorithm is demonstrated through the application to the IEEE 69-bus standard RDS with different scenarios: DG Type-I, DG Type-III, and capacitor banks (CBs). Furthermore, the effects of simultaneously integrating single and multiple DG Type-I with DG Type-III are illustrated. The results obtained revealed the effectiveness of the HBA for optimizing the size and location of single and multiple DGs and CBs with a considerable decline in the system’s real power losses. Additionally, the results have been compared with those obtained by other known algorithms.
Read full abstract