Precise prediction of PV power in the short term is crucial for maintaining power system stability and balance. However, the performance of conventional time series prediction models on short-term long series prediction is scarcely sufficient because of the stochastic and turbulent character of PV power data. This work suggests a PV short-term power forecast model based on weather type, AHA-VMD-MPE decomposition reconstruction, and improved Informer combination to tackle this issue. Firstly, a SUM-ApEn-K-mean++ multidimensional clustering method to group the dataset by weather conditions. Then an AHA-VMD-MPE decomposition model is proposed to decompose the historical power data Finally the Informer model is improved and the improved model is utilized to predict the PV power under various weather conditions. The model exhibits great accuracy and stability in short-term PV power prediction, as demonstrated by the experimental results, which were validated using measured data from many PV power plants.
Read full abstract