Abstract

We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model follows the convolutional neural network – long-short term memory architecture. Its inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The model focuses on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen validation data, the model achieves a mean absolute error of 74.29 W/m2over a time horizon of up to two hours, compared to a baseline 134.35 W/m2 using the POC model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.