In this paper we report the detection of five strong gamma-ray bursts (GRBs) by the High-Energy Particle Detector (HEPD-01) mounted on board the China Seismo-Electromagnetic Satellite, operational since 2018 on a Sun-synchronous polar orbit at a ∼507 km altitude and 97° inclination. HEPD-01 was designed to detect high-energy electrons in the energy range 3–100 MeV, protons in the range 30–300 MeV, and light nuclei in the range 30–300 MeV n−1. Nonetheless, Monte Carlo simulations have shown HEPD-01 is sensitive to gamma-ray photons in the energy range 300 keV–50 MeV, even if with a moderate effective area above ∼5 MeV. A dedicated time correlation analysis between GRBs reported in literature and signals from a set of HEPD-01 trigger configuration masks has confirmed the anticipated detector sensitivity to high-energy photons. A comparison between the simultaneous time profiles of HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A, GRB200826B, and GRB211211A has shown a remarkable similarity, in spite of the different energy ranges. The high-energy response, with peak sensitivity at about 2 MeV, and moderate effective area of the detector in the actual flight configuration explain why these five GRBs, characterized by a fluence above ∼3 × 10−5 erg cm−2 in the energy interval 300 keV–50 MeV, have been detected.