In this paper, we consider the closed embedded hypersurface Σ in the warped product manifold [Formula: see text] equipped with the metric g = dr2 + λ(r)2 gN. We give some characterizations of slice {r} × N by the condition that Σ has constant weighted higher-order mean curvatures (λ′)αpk, or constant weighted higher-order mean curvature ratio (λ′)αpk/p1, which generalize Brendle's [Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 247–269] and Brendle–Eichmair's [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] results. In particular, we show that the assumption convex of Brendle–Eichmair's result [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] is unnecessary. Here pk is the kth normalized mean curvature of the hypersurface Σ. As a special case, we also give some characterizations of geodesic spheres in ℝn, ℍn and [Formula: see text], which generalize the classical Alexandrov-type results.
Read full abstract