Abstract
The Minkowski inequality is a classical inequality in differential geometry giving a bound from below on the total mean curvature of a convex surface in Euclidean space, in terms of its area. Recently there has been interest in proving versions of this inequality for manifolds other than R n \mathbb {R}^n ; for example, such an inequality holds for surfaces in spatial Schwarzschild and AdS-Schwarzschild manifolds. In this note, we adapt a recent analysis of Y. Wei to prove a Minkowski-like inequality for general static asymptotically flat manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.