Abstract

Using an elementary argument we find an upper bound on the Yamabe constant of the outermost minimal hypersurface of an asymptotically flat manifold with nonnegative scalar curvature that satisfies the Riemannian Penrose Inequality. Provided the manifold satisfies the Riemannian Penrose Inequality with rigidity, we show that equality holds in the inequality if and only if the manifold is the Riemannian Schwarzschild manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.