Polyurethane is widely used on the surface of composite materials for rotor blades as sand erosion protection materials. The failure mechanism investigation of polyurethane film under service conditions is useful for developing the optimal polyurethane film for rotor blades. In this article, the sand erosion test parameters were ascertained according to the service environment of the polyurethane film. The sand erosion resistance and failure mechanism of polyurethane film at different impact angles were analyzed by an infrared thermometer, a Fourier transform infrared spectrometer (FTIR), a differential scanning calorimeter (DSC), a field emission scanning electron microscope (FESEM), and a laser confocal microscope (CLSM). The results show that the direct measurement method of volume loss can better characterize the sand erosion resistance of the polyurethane film compared to traditional mass loss methods, which avoids the influence of sand particles embedded in the polyurethane film. The sand erosion resistance of polyurethane film at low-angle impact is much lower than that at high-angle impact. At an impact rate of 220 m/s, the volume loss after sand erosion for 15 min at the impact angle of 30° is 57.8 mm3, while that at the impact angle of 90° is only 2.6 mm3. The volume loss prediction equation was established according to the experimental data. During low-angle erosion, the polyurethane film damage is mainly caused by sand cutting, which leads to wrinkling and accumulation of surface materials, a rapid increase in roughness, and the generation of long cracks. The linking of developing cracks would lead to large-scale shedding of polyurethane film. During high-angle erosion, the polyurethane film damage is mainly caused by impact. The connection of small cracks caused by impact leads to the shedding of small pieces of polyurethane, while the change in the roughness of the film is not as significant as that during low-angle erosion. The disordered arrangement of the soft and hard blocks becomes locally ordered under the action of impact and cutting loads. Then, the disordered state is restored after the erosion test finishes. The erosion of sand particles leads to an increase in the temperature of the erosion zone of the polyurethane film, and the maximum temperature rise is 6 °C, which does not result in a significant change in the molecular structure of the polyurethane film. The erosion failure mechanism is cracking caused by sand cutting and impact.