Surface water samples were collected from 20 sampling sites in the main stream and its major tributaries of the Yangtze River from April to May 2017. The concentrations of dissolved trace and major elements were analyzed to determine the spatial variation, source identification, and riverine fluxes using various multivariate statistical techniques, including correlation analysis, principal component analysis (PCA), and cluster analysis (CA) with the goal of determining the influence of natural factors and human activities, including the operation of the Three Gorges Dam on the distribution and loading of major and trace elements in the Yangtze River water environment. Spatial distribution results showed that Cu, Zn, Pb, Cd, and As were the major elements affected by human activities in the Yangtze River, and their concentrations downstream were significantly higher than those in the middle and upper reaches (P<0.05). All elements had fairly high concentration values in both channels of the Yangtze River mainstream in Chongqing city and Hanjiang River in Wuhan city, which were mainly related to the enhanced human activities. However, the low concentrations of multi-elements in the reach of the Yangtze River in Yichang were largely caused by the retention effect of Three Gorges Project on element transport, which decreased the riverine loadings of multi-elements. Principal component analysis (PCA) indicated that Na, Mg, K, Ca, Fe, Mn, Co, Ni, Mo, Cr, and V were mainly associated with the weathering and erosion of various rocks and minerals in the river basin. And Cu, Zn, and Pb were mainly affected by enhanced human activities, such as industrial wastewater, metal smelting, and mineral mining, whereas Cd and As were mainly related to agricultural activities. The spatial distribution of trace and major elements showed that concentrations of some elements in the Yangtze River channels were enhanced by human activities. Generally, the heavy metal pollution in the Yangtze River Basin was lower than that in other rivers of the world. However, the annual fluxes of Cu, Zn, Pb, Cd, and As could have far-reaching ecological effects on the Yangtze River estuary and offshore ecological environment.