Imposing the Born rule as a fundamental principle of quantum mechanics would require the existence of normalizable wave functions ψ( x , t) also for relativistic particles. Indeed, the Fourier transforms of normalized k -space amplitudes yield normalized functions ψ( x , t) which reproduce the standard k -space expectation values for energy and momentum from local momentum (pseudo-)densities ℘ μ ( x , t) = (ℏ/2i)[ψ +( x , t)∂ μ ψ( x , t) − ∂ μ ψ +( x , t) · ψ( x , t)]. However, in the case of bosonic fields, the wave packets ψ( x , t) are nonlocally related to the corresponding relativistic quantum fields ϕ( x , t), and therefore the canonical local energy-momentum densities and differ from ℘ μ ( x , t) and appear nonlocal in terms of the wave packets ψ( x , t). We examine the relation between the canonical energy density , the canonical charge density ϱ( x , t), the energy pseudo-density , and the Born density ∣ψ( x , t)∣2 for the massless free Klein–Gordon field. We find that those four proxies for particle location are tantalizingly close even in this extremely relativistic case: in spite of their nonlocal mathematical relations, they are mutually local in the sense that their maxima do not deviate beyond a common position uncertainty Δx. Indeed, they are practically indistinguishable in cases where we would expect a normalized quantum state to produce particle-like position signals, viz. if we are observing quanta with momenta p ≫ Δp ≥ ℏ/2Δx. We also translate our results to massless Dirac fields. Our results confirm and illustrate that the normalized energy density provides a suitable measure for positions of bosons, whereas normalized charge density ϱ( x , t)/q provides a suitable measure for fermions.
Read full abstract