Abstract

Motivated by the Bose et al.-Matletto-Vedral (BMV) proposal for detecting quantum superposition of spacetime geometries, we study a toy model of a quantum entanglement generation between two spins (qubits) mediated by a relativistic free scalar field. After time evolution, spin correlation is generated through the interactions with the field. Because of the associated particle creation into an open system, the quantum state of spins is partially decohered. In this paper, we give a comprehensive study of the model based on the closed-time path formalism, focussing on relativistic causality and quantum mechanical complementarity. We calculate various quantities such as spin correlations, entanglement entropies, mutual information and negativity, and study their behaviors in various limiting situations. In particular, we calculate the mutual information of the two spins and compare it with spin correlation functions. We also discuss why no quantum entanglement can be generated unless both spins are causally affected by one another while spin correlations are generated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.